从25匹马(一共5组,每组5匹)中选出跑的最快的5匹,每次比较5匹(5个赛道),每个赛道只能有一匹马进行比赛,假设每匹马的状态是稳定的,不使用秒表,请问最少需要几次才能选出最快的3匹?
- A、7
- B、8
- C、9
- D、10
回答后才能看到答案和解析
第一步:把马分成5组A1 A2 A3 A4 A5;B1 B2 B3 B4 B5;C1 C2 C3 C4 C5;D1 D2 D3 D4 D5;E1 E2 E3 E4 E5。 第二步:5组进行组内排序,假设排序结果为:A1>A2>A3>A4>A5;B1>B2>B3>B4>B5;C1>C2>C3>C4>C5;D1>D2>D3>D4>D5;E1>E2>E3>E4>E5(5次)。 第三步:每组第一名,即A1 B1 C1 D1 E1进行比赛,假设结果为:A1>B1>C1>D1>E1,即获取第一快马为A1(1次)。 分析:由以上6次比赛结果可以知道:第二快马在A2和B1,若A2>B1,则A2为第二快马,第三快马在A3和B1之间;若B1>A2,则B1为第二快马,第三快马在A2,B2,C1之间,所以要获取第二、第三快马,只需要把A2 A3 B1 B2 C1比赛一次即可。 第四步:把A2 A3 B1 B2 C1比赛,获取前2名(1次)。 总结:5+1+1=7